Running BGP in Data Centers at Scale

Anubhavnidhi Abhashkumar®* ", Kausik Subramanian®*, Alexey Andreyev®, Hyojeong Kim®,
Nanda Kishore Salem®, Jingyi Yang®, Petr Lapukhov®, Aditya Akella’, Hongyi Zeng®
University of Wisconsin - Madison®, Facebook®

Abstract

Border Gateway Protocol (BGP) forms the foundation for
routing in the Internet. More recently, BGP has made serious
inroads into data centers on account of its scalability, exten-
sive policy control, and proven track record of running the
Internet for a few decades. Data center operators are known
to use BGP for routing, often in different ways. Yet, because
data center requirements are very different from the Internet,
it is not straightforward to use BGP to achieve effective data
center routing.

In this paper, we present Facebook’s BGP-based data cen-
ter routing design and how it marries data center’s stringent
requirements with BGP’s functionality. We present the de-
sign’s significant artifacts, including the BGP Autonomous
System Number (ASN) allocation, route summarization, and
our sophisticated BGP policy set. We demonstrate how this
design provides us with flexible control over routing and
keeps the network reliable. We also describe our in-house
BGP software implementation, and its testing and deploy-
ment pipelines. These allow us to treat BGP like any other
software component, enabling fast incremental updates. Fi-
nally, we share our operational experience in running BGP
and specifically shed light on critical incidents over two years
across our data center fleet. We describe how those influenced
our current and ongoing routing design and operation.

1 Introduction

Historically, many data center networks implemented simple
tree topologies using Layer-2 spanning tree protocol [5, 11].
Such designs, albeit simple, had operational risks due to broad-
cast storms and provided limited scalability due to redun-
dant port blocking. While centralized software-defined net-
work (SDN) designs have been adopted in wide-area net-
works [28,29] for enhanced routing capabilities like traffic
engineering, a centralized routing controller has additional
scaling challenges for modern data centers comprising thou-
sands of switches, as a single software controller cannot react
quickly to link and node failures. Thus, as data centers grew,
one possible design was to evolve into a fully routed Layer-3
network, which requires a distributed routing protocol.

*Work done while at Facebook. Authors contributed equally to this work.
fCurrently works at ByteDance.

Border Gateway Protocol (BGP) is a Layer-3 protocol
which was originally designed to interconnect autonomous In-
ternet service providers (ISPs) in the global Internet. BGP has
supported the Internet’s unfettered growth for over 25 years.
BGP is highly scalable, and supports large topologies and pre-
fix scale compared to intra-domain protocols like OSPF and
ISIS. BGP’s support for hop-by-hop policy application based
on communities makes it an ideal choice for implementing
flexible routing policies. Additionally, BGP sessions run on
top of TCP, a transport layer protocol that is used by many
other network services. Such explicit peering sessions are
easy to navigate and troubleshoot. Finally, BGP has the sup-
port of multiple mainstream vendors, and network engineers
are familiar with BGP operation and configuration. Those
reasons, among others, make BGP an attractive choice for
data center routing.

BGP being a viable routing solution in the data center (DC)
networks has been well known in the industry [11]. However,
the details of a practical implementation of such a design
have not been presented by any large-scale operator before.
This paper presents a first-of-its-kind study that elucidates the
details of the scalable design, software implementation, and
operations. Based on our experience at Facebook, we show
that BGP can form a robust routing substrate but it needs
tight co-design across the data center topology, configuration,
switch software, and DC-wide operational pipeline.

Data center network designers seek to provide reliable con-
nectivity while supporting flexible and efficient operations.
To accomplish that, we go beyond using BGP as a mere rout-
ing protocol. We start from the principles of configuration
uniformity and operational simplicity, and create a baseline
connectivity configuration (§2). Here, we group neighboring
devices at the same level in the data center as a peer group
and apply the same configurations on them. In addition, we
employ a uniform AS numbering scheme that is reused across
different data center fabrics, simplifying ASN management
across data centers. We use hierarchical route summariza-
tion on all levels of the topology to scale to our data center
sizes while ensuring forwarding tables in hardware are small.
Our policy configuration (§3) is tightly integrated with our
baseline connectivity configuration. Our policies ensure re-
liable communication using route propagation scopes and
predefined backup paths for failures. They also allow us to
maintain the network by seamlessly diverting traffic from
problematic/faulty devices in a graceful fashion. Finally, they

ensure services remain reachable even when an instance of
the service gets added, removed, or migrated.

While BGP’s capabilities make it an attractive choice for
routing, past research has shown that BGP in the Internet
suffers from convergence issues [33, 37], routing instabili-
ties [32], and frequent misconfigurations [21,36]. Since we
control all routers in the data center, we have flexibility to
tailor BGP to the data center which wouldn’t be possible to
achieve in the Internet. We show how we tackled common
issues faced in the Internet by fine-tuning and optimizing
BGP in the data center (§4). For instance, our routing de-
sign and predefined backup path policies ensure that under
common link/switch failures, switches have alternate routing
paths in the forwarding table and do not send out fabric-wide
re-advertisements, thus avoiding BGP convergence issues.

To support the growing scale and evolving routing require-
ments, our switch-level BGP agent needs periodic updates to
add new features, optimization, and bug fixes. To optimize
this process, i.e., ensure fast frequent changes to the network
infrastructure to support good route processing performance,
we implemented an in-house BGP agent (§5). We keep the
codebase simple and implement only the necessary protocol
features required in our data center, but we do not deviate
from the BGP RFCs [6-8]. The agent is multi-threaded to
leverage multi-core CPU performance of modern switches,
and leverages optimizations like batch processing and policy
caches to improve policy execution performance.

To minimize impact on production traffic while achieving
high release velocity for the BGP agent, we built our own
testing and incremental deployment framework, consisting
of unit testing, emulation and canary testing (§6.1). We use
a multi-phase deployment pipeline to push changes to agent
(§6.2). We find that our multi-phase BGP agent pushes ran
for 52% of the time in a 12 month duration, highlighting the
dynamic nature of the BGP agent in our data center.

In spite of our tight co-design, simplicity, and testing frame-
works, network outages are unavoidable. On the operational
side, we discuss some of the significant BGP-related network
outages known as SEVs [38] that occurred over two years
(§6.3)—these outages were either caused by incorrect policy
configurations, bugs in the BGP agent software, or interop-
erability issues between different agent versions during the
deployment of the new agent. Using our operational experi-
ence, we discuss current directions we are pursuing in extend-
ing policy verification and emulation testing to improve our
operational framework, and changing our routing design to
support weighted load-balancing to address load imbalances
under maintenance/failures.

Contributions.

e We present our novel BGP routing design for the data cen-
ter which leverages BGP to achieve reliable connectivity
along with operational efficiency.

e We describe the routing policies used in our data center to
enforce reliability, maintainability, scalability, and service

Spine Plane 1
(0000 000

Spine Plane 4
CXXX)

Spine Switches
(SSW)

Fabric Switches
(FSW)

Rack Switches
(RSW)

Server Pod 1 Server Pod N

Figure 1: Data Center Fabric Architecture

reachability.
e We show how our data center routing design and policies
overcome common problems faced by BGP in Internet.
e We present our BGP operational experience, including the
benefits of our in-house BGP implementation and chal-
lenges of pushing BGP upgrades at high release velocity.

2 Routing Design

Our original motivation in devising a routing design for our
data center was to build our network quickly while keeping
the routing design scalable. We sought to create a network
that would provide high availability for our services. However,
we expected failures to happen - hence, our routing design
aimed to minimize the blast radius of those.

In the beginning, BGP was a better choice for our needs
compared to a centralized SDN routing solution for a few rea-
sons. First, we would have needed to build the SDN routing
stack from scratch with particular consideration for scalability
and reliability, thus, hindering our deployment pace. Simulta-
neously, BGP has been demonstrated to work well at scale;
thus, we could rely on a BGP implementation running on
third-party vendor devices. As our network evolved, we grad-
ually transitioned to our custom hardware [18] and in-house
BGP agent implementation. This transition would have been
challenging to achieve without using a standardized routing
solution. With BGP, both types of devices were able to co-
operate in the same network seamlessly.

At the time, BGP was a better choice for us compared to
the Interior Gateway protocols (IGP) like Open Shortest Path
First (OSPF) [39] or Intermediate System to Intermediate Sys-
tem (ISIS) [25]. The scalability of IGPs at scale was unclear,
and the IGPs did not provide the flexibility to control route
propagation, making it harder to manage failure domains.

We used BGP as the sole protocol and did not pursue a
hybrid BGP-IGP routing design as maintaining multiple pro-
tocols would add to the complexity of the routing solution.
Our routing design builds on the eBGP (External BGP) peer-
ing model: Each switch is a BGP speaker and the neighboring
BGP speakers are in different autonomous systems (AS). In
this section, we provide an overview of our BGP-based rout-
ing design catered for our scalable data center fabric topology.

2.1 Topology Design

Application requirements evolve constantly, and our data cen-
ter design must be capable of scaling out and handling addi-
tional demand in a seamless fashion. To this end, we adopt
a modular data center fabric topology design [4], which is a
collection of server pods interconnected by multiple parallel
spine planes. We illustrate our topology in Figure 1.

A server pod is the smallest unit of deployment, and it has
the following properties: (1) each pod can contain up to 48
server racks, and thus, up to 48 rack switches (RSW5s), (2)
each pod is serviced by up to 16 fabric switches (FSWs), and
(3) each rack switch connects to all FSWs in a pod.

Multiple spine planes interconnect the pods. Each plane
has multiple spine switches (SSW) connecting to FSWs using
uniform high-bandwidth links (FSW-SSW). The number of
spine planes corresponds to the number of FSWs in one pod.
Each spine plane provides a set of disjoint end-to-end paths
between a collection of server pods. This modular design
enables us to scale server capacity and network bandwidth as
needed—we can increase compute capacity by adding new
server pods, while inter-pod bandwidth scales by adding new
SSWs on planes.

2.2 Routing Design Principles

We employ two guiding design principles in our DC-wide
BGP-based routing design: uniformity and simplicity. We
realize these principles by tightly integrating routing design
and configuration with the above topology design.

We strive to minimize the BGP feature set and establish
repeatable configuration patterns and behaviors throughout
the network. Our BGP configuration is homogeneous within
each network tier (RSW, FSW, SSW). The devices serving in
the same tier have the same configuration and policies, except
for the originated prefixes and peer addresses.

We generate the network topology data and configuration
which includes port-maps, IP addressing, BGP, and routing
policy configurations for our switches irrespective of the un-
derlying switch platforms. The abstract generic configurations
are then translated into the target platform’s configuration syn-
tax by our automation software. This ensures that we can eas-
ily adapt to changing hardware capabilities in the data center.
The details of our configuration management and platform-
specific syntax generation can be found in Robotron [44].

2.3 BGP Peering & Load-Sharing

Peering. For uniformity and simplicity in configuration and
operations, we treat the whole set of the BGP peers of the
same adjacent tier (RSW/FSW/SSW) on a network switch as
an atomic group, called peer group. Each data center switch
connects to groups of devices on each adjacent tier. For exam-
ple, a FSW aggregates a set of RSWs and has uplinks to mul-
tiple SSWs—this makes two distinct peer groups. All BGP

peering sessions between adjoining device tiers—for exam-
ple RSW~FSW and FSW <> SSW—utilize the same protocol
features, timers, and other parameters. Thus, all peers within
a group operate in a uniform fashion.

We apply BGP configuration and routing policies on a peer
group level. Individual BGP peer sessions belong to a peer
group and do not have any additional configuration informa-
tion beside the neighbor specification. This grouping helps us
to simplify configuration and streamline processing of routing
updates, as all peers in the same group have identical policies.

For peering, we use direct single-hop eBGP sessions with
BGP NEXT_HOP attribute, set to the remote end of the point-
to-point subnet. This makes the link usable for BGP routing
purposes as soon as it is up. If there are multiple parallel links
between the devices, we treat them as individual point-to-
point Layer-3 subnets with corresponding BGP sessions. This
design allows us to clearly associate BGP sessions with the
corresponding network interfaces and simplifies RIB (routing
information base) and FIB (forwarding information base)
navigation, manipulation, and troubleshooting.
Load-Sharing. To support load-sharing of traffic along multi-
ple paths in the data center, we use BGP with Equal Cost Mul-
tipath (ECMP) feature. Each switch forwards traffic equally
among paths with equivalent attributes according to BGP best
path selection and routing policy in effect. With the presence
of multiple paths of equal cost, the vast majority of the switch
FIB programming involves removing next hops (when failure
occurs) or adding them back (when switch/link comes back
up) in the existing ECMP groups. Updating ECMP groups in
the FIB is a lightweight and simple operation.

We do not currently use weighted load-balancing inside
our data centers for various reasons. Our fabric topology is
highly symmetric with wide ECMP groups. We provision
the bandwidth uniformly to maximize flexibility of dynamic
service placement in the data center. Coupled with the design
of our failure domains, this ensures sufficient capacity for
services under most common failure scenarios. Moreover,
WCMP [48] requires more hardware resources due to the
replication of next-hops to perform weighted load-balancing.
This does not align well with our goal of minimizing the FIB
size requirements in hardware.

2.4 AS Numbering

Following the design principles of uniformity and simplicity,
we design a uniform AS numbering scheme for the topology
building blocks, such as server pods and spine planes. Our AS
numbering scheme is canonical, i.e., the same AS numbers
can be reused across data centers in the same fashion. For
example, each SSW in the first spine plane in each data center
would have the same AS number (e.g., AS 65001). Similarly,
the RSWs and FSWs in every server pod of every data center
share the same AS numbering structure. To accomplish this
goal, we leverage BGP confederations [7]. A confederation

Server Pod 65101 Spine Plane 65001
AS AS AS AS RS o
65301 65302 65303 65304 ;,@«;m,@mc,@\ R

O O O O O O

AS AS AS AS AS As

65401 65402 65403 65404 65405 N
Confed AS: 65101

Plane AS: 65001

Figure 2: BGP Confederation and AS Numbering scheme for
server pods and spine planes in the data center.

divides an AS into multiple sub-ASes such that the sub-ASes
and internal paths between them are not visible to the BGP
peers outside the confederation.

The uniformity facilitated by our use of confederations and
the reusable ASNs (as opposed to a flat routing space) estab-
lishes well-structured AS_PATHs for policies and automation.
This also helps operators to reason about a routing path eas-
ily by inspecting a given AS_PATH during troubleshooting.
Inside the data center, we utilize the basic two-octet Private
Use AS Numbers, which are sufficient for our design.

Server Pod. To create a reusable ASN structure for server
pods—the most numerous building blocks inside our data
center network—we implement each server pod as a BGP
Confederation. Inside the pod, we allocate unique internal
confederation-member ASNs for each FSW and each RSW.
We then peer between the devices in a fashion similar to
eBGP. The structure of these internal sub-AS numbers repeats
within each pod. We assign a unique private AS number
per pod (Pod ASN) within a data center as a Confederation
Identifier ASN, which is how the pod presents itself to the data
center spine and servers. The numbering pattern of unique pod
Confederation Identifier ASNs repeats across different data
centers. In Figure 2, in each pod, RSWs are numbered from
ASN 65401 to N, FSWs are numbered from ASN 65301 to
ASN 65304, and server pods are numbered as Confederation
Identifier ASN 65101, 65102 and so on.

Spine Plane. Each spine plane in the data center fabric has its
own unique (within the data center) private ASN assigned to
all SSWs in it. In Figure 2, in the first spine plane, all SSWs
are numbered ASN 65001. Similarly, all SSWs in the next
spine plane would be numbered ASN 65002. This simplicity
is possible because each SSW device operates independently
from the others, serving as a member of the ECMP groups for
the paths between pods. As no two SSWs directly peer with
each other, they can use the same AS number. Reuse of ASNs
acts as a loop breaking mechanism, ensuring that no route
will traverse through multiple SSWs. The unique per-plane
ASNs also aid us in simple identification of the operationally
available planes for paths visible on rack switches.

2.5 Route Summarization

There are two principal categories of IP routes in our data
centers: infrastructure and production. Infrastructure prefixes
facilitate network device connectivity, management, and di-
agnostics. They carry relatively low traffic. In the event of a
device or link failure, their reachability may be non-critical
or can be supported by stretched paths. Production prefixes
carry high-volume live traffic of our applications and must
have continuous reachability in all partial failure scenarios,
with optimal routing and sufficient capacity of all involved
network paths and ECMP groups.

There are many routes in our data centers. To minimize
the FIB size requirements in hardware and ensure lightweight
control plane processing, we use hierarchical route summa-
rization on all levels of the network topology. For production
routes, we design IP addressing schemes which closely re-
flect the multi-level hierarchy. The RSWs aggregate the IP
addresses of their servers and the FSWs aggregate the routes
of their RSWs. For infrastructure routes, we have the follow-
ing aggregates. Each device aggregates the IP addresses of
all its interfaces, i.e. per-device aggregate. FSWs aggregate
per-device RSW/FSW infrastructure routes into per-pod ag-
gregates. And SSWs aggregate per-device SSW infrastructure
routes into per-spine aggregates.

Depending on the route type and associated reachability
criteria, switches advertise prefixes into BGP either uncon-
ditionally, or upon meeting the requirement of the minimal
number of more-specific prefixes. The more-specific prefixes
have a more limited propagation scope, while the coarser ag-
gregates propagate farther on the network. For example, rack
prefixes circulate only within their local pod, while pod-level
aggregates propagate to the other pods and racks within the
local data center fabric.

Hence, despite the sheer scale of our data center fabrics,
our structured uniform route summarization ensures that the
sizes of routing tables on switches are in low thousands of
routes. Without route summarization, each router would have
over hundred thousand routes, each route corresponding to
the switches’ interfaces and server racks. Our approach has
many benefits: it allows us to use inexpensive commodity
switch ASICs at the data center scale, enables fast and efficient
transmission of routing updates, speeds up convergence (§5),
and speeds up programming forwarding hardware.

3 Routing Policies

A key feature of BGP is the availability of well-defined at-
tributes that influence the best path selection. Together with
the ability to intercept route advertisements and admission
at any hop and session, it allows us to control route propaga-
tion in the network with high precision. In this section, we
review the use cases for routing policies in our data centers.
We also describe how we configure the policies in BGP, while

match: ‘rack_prefix’

f fsw
oW fsw fs action: add tag

1 2
7 1 >< T g >< 2 ‘backup_path’
I l
U
b 4 match: ‘backup_path’
rsw FSW . action: add tag/ rsw rsw action: allow
1 2 ‘rack_prefix’ 1 2

a) traffic flow on link failure b) advertisement flow

Figure 3: Example of predefined backup path policy.

realizing our principles of uniformity and simplicity.

3.1 Policy Goals

The Internet comprises multiple ASes owned by different
ISPs. ISPs coordinate with each other to ensure routing objec-
tives across the Internet. The routing policies mainly pertain
to peering based on business relationships (customer-peer-
provider) among different ISPs. However, since all the routers
in our data centers are controlled by us, we do not have to
worry about peering based on business relationships. Our data
center routing design uses routing policies to ensure reliabil-
ity, maintainability, scalability, and service reachability. We
summarize these policy goals in Table 1.

Goal Description
Reliability

Enforce route propagation scopes, predefine
backup paths for failure

Maintainability | Isolate and remediate problematic nodes with-
out disrupting traffic

Scalability Enforce route summarization, avoid backup

path explosion
Service reach-
ability

Avoid service disruptions when instances of
services are added, removed or migrated

Table 1: Policy goals

We use BGP Communities/tags to categorize prefixes into
different types. We attach a particular route type community
during prefix origination at the network device. This type tag
persists with the prefix as it propagates. We perform matching
on these communities to implement all our BGP policies in a
uniform scalable fashion. We demonstrate how we use them
with the examples in this section.

Reliability. Our routing policies allow us to safeguard the
data center network stability. The BGP speakers only accept
or advertise the routes they are supposed to exchange with
their peers according to our overall data center routing design.

The BGP policies match on tags to enforce the intended
route propagation scope. For example, in Fig. 3b, routes
tagged with rack_pre fix only propagate within the pod (i.e.,
not to the SSW layer).

Using BGP policies, we establish deterministic backup
paths for different route types. This uniformly-applied proce-
dure ensures the traffic will take predictable backup paths in
the event of failures. We use backup path policies to protect
FSW-RSW link failures. Consider the example in Fig. 3. We
use tags to implement the backup policy, as shown in Fig. 3b.

When rsw1 originates a route, it adds a rack_pre fix tag. The
fsw2 matches on that tag, adds another tag backup_path,
and forwards the route to rsw2. rsw2 ensures routes tagged
with backup_path are advertised to fswl. When fswl de-
tects the tag backup_path, it installs the backup route and
adds the tag completed_backup_path (not shown in figure)
which stops any unnecessary continued backup route propa-
gation. In Fig. 3a, when the fswl-rswl link fails, fsw1 will
not send a new advertisement to its SSWs to signal the loss
of connectivity to rsw1. Instead, BGP will reconverge to use
the backup path (fswl — rsw2 — fsw2 — rswl) to reroute
traffic through another RSW within the pod. And due to route
summarization at the FSW (§2.5), these failures within a pod
will not be visible to the SSWs and hence the routers outside
the pod.

Backup paths are computed and distributed automatically
as a part of BGP routing convergence. They are readily avail-
able when link failure happens. Typically, an FSW has multi-
ple backup paths, of the same AS path length, to each RSW.
When the direct fsw-rsw link fails, all of the backup paths
will be used for ECMP.

In our network, each device has inbound (import) and out-

bound (export) match-action rules. Routes get advertised be-
tween two neighboring BGP speakers (X and Y) if they are
allowed at both ends of the BGP session, i.e., they need to
match an outbound rule of device X and an inbound rule of
its neighboring device Y. This logic protects against routing
misconfigurations on the peer. Additionally, on each device,
routes that do not match on any of its rules are dropped to
prevent unintended network behaviors.
Maintainability. In a data center, many events occur every
hour and we expect things to fail. We see events like rack
removal or addition, link flap or transceiver failure, network
device reboot or software crash, software or configuration
push failure, etc. Additionally, network devices are undergo-
ing routine software upgrades and other maintenance opera-
tions. To avoid disruption of production traffic, we gracefully
drain the device before maintenance—production traffic gets
diverted from the device without incurring losses. For this,
we define multiple distinct operational states for a network
device. The state affects the route propagation logic through
the device, as shown in Table 2. We change the routing policy
configuration of a device based on its operational state. These
configurations implement the logic specified in Table 2.

To gracefully take a device or a group of devices out of
service (DRAINED) or put it back in service (LIVE), we ap-
ply policies corresponding to the current state on the peer
groups. This initiates the new mode of operation across all
affected BGP peers. Previous works [23] have used a multi-
stage draining to gracefully drain traffic without disruptions.
We also implement a multi-stage drain process with an in-
terim WARM state. In the WARM state, we change the BGP
policies to de-prioritize routes traversing through the device
about to be drained. We also adjust the local and/or remote

State Description

LIVE The device is operating in active mode and carries full production traffic load.

DRAINED

WARM

The device is operating in passive mode. It doesn’t carry any production traffic. Only the traffic to/from infrastruc-
ture/diagnostic prefixes may be allowed. Transiting infrastructure prefixes are lowered in priority.

The device is in process of changing states. It maintains full local RIB and FIB ready to support the production traffic,
but adjusts route propagation and signals to avoid attracting live traffic.

Table 2: Operational states of a network switch

ECMP groups and ensure that network links do not become
overloaded during the transition from LIVE to DRAINED
state and vice-versa. Once BGP converges, all production
traffic is rerouted to/from the device, and we can change the
state of the network device again into the final state.

In the DRAINED state, BGP policies allow us to propagate
only selected prefixes through the devices, and change route
priorities. For example, this feature allows us to maintain
reachability to the infrastructure (e.g., the switch’s manage-
ment plane) and advertise diagnostic prefixes through the
devices under maintenance, while keeping the production
traffic away from such devices.

Drain/undrain is a frequently used operation in data center

maintenance. On average, we perform 242 drain and undrain
operations daily. These operations take on average 36s to
complete. The multi-stage state change ensures that there are
no transient drops during this process.
Scalability. The routing policies allow us to implement and
enforce our hierarchical route summarization design (§2.5).
For example, in our network, our policy in FSW summarizes
rack-level prefixes into pod-specific aggregates. They adver-
tise these aggregates to the SSW tier. These policies also
control propagation scopes for different route aggregation
levels and minimize the routing table sizes in our switches.

The predefined backup paths also aid in scalability. These
paths ensure our reaction to failures are deterministic and
avoid triggering large-scale advertisements during failures
which can cause BGP convergence problems.

To reduce policy processing overhead, we design all our

policies to first apply rules which accept or deny the most
number of prefixes. For example, in a drained state (Table 2),
the FSW’s outbound policy toward SSW first rejects routes
marked to (i) avoid propagation to SSWs, or (ii) carry any
production traffic. After that, it matches and lowers the prior-
ity of infrastructure routes before sending them to SSW. This
design ensures we minimize the policy processing overhead
on routes that will be dropped.
Service Reachability. One important goal of the data center
network design is providing service reachability. A service
should remain reachable even when an instance of the service
gets added, removed, or migrated. As one of the mechanisms
for providing service reachability in the network, we use Vir-
tual IP addresses (VIPs). A particular service (e.g., DNS) may
advertise a single VIP (serviced by multiple instances). In
turn, anycast routing will provide reachability to one of the
instances for traffic destined to the VIP.

To support flexible instance placement without compromis-
ing uniformity and simplicity, we create a VIP injector service
in the form of a software library integrated with a service in-
stance. The injector establishes a BGP session with the RSW
and announces a route to signal the VIP reachability. When
the service instance gets terminated, the injector sends a route
withdrawal for the VIP. The routing policy on the RSW relays
VIP routes to FSW after performing safety checks, such as
ensuring that the injected VIP prefix conforms to the design
intent. FSW’s inbound policy from RSWs tags and sets differ-
ent priorities for different VIP routes. This method allows for
network-wide VIP priorities for active/backup applications.

By directly injecting VIP routes from services, we do
not need to make changes to the network when creat-
ing/destroying service instances or adjusting active/backup
service behaviors. That is, we do not need to change RSW
configurations to start/stop advertising the VIPs or change
VIP instance priorities. Our services integrate the injector
library into their code (§5) and fully control when and how
they want to update their VIPs.

3.2 Policy Configuration

For scalability and uniformity reasons, our policies primarily
operate on BGP Communities and AS_PATH regular expres-
sion matches, and not on specific IP prefixes. To implement
policy actions, we may accept or deny a route advertisement,
or modify BGP attributes to manipulate the route’s priority
for best-path selection. We configure our routing policies on
the BGP peer group level—therefore, any policy change is
simultaneously applied to all peers in the group. Our reusable
ASN design (§2.4) also allows us to use the same policies
across our multiple data center fabrics.

The number of policy rules that exist between tiers of our
data center network are relatively lightweight: 3-31 inbound
rules (average 11 per session) and 1-23 outbound rules (av-
erage 12 per session). The majority of outbound policies
tag routes to specify their propagation scope, and the ma-
jority of inbound policies perform admission control based
on the route propagation tags and adjust LOCAL_PREF or
AS_PATH length to influence route preference.

For the most numerous device role in our fleet, RSW, we
keep the policy logic at the necessary minimum to reduce the
need for periodic changes. To compensate for this, the FSWs
in the pods have larger policies that offload some processing
logic from the RSWs.

0.00 T T T T :
0% 08% 1.6% 24% 32% 4.0%
Percentage of Changed Lines

Figure 4: Network Policy Churn

For the commonly used BGP communities and other prefix
attributes we maintain structured naming and numbering stan-
dards, suitable both for humans and automation tools. For the
purposes of this paper, we elide the low-level details of our
policy language syntax, objects, and rules.

3.3 Policy Churn

We maintain a global set of abstract policy templates and
use them to generate individual switch configurations via an
automated pipeline [44]. The routing policy used in our data
center is fairly stable—we have made 40 commits to the rout-
ing policy templates over a period of three years. We show
the cumulative distribution function (CDF) of the number
of lines of changes made to the routing policy templates in
Figure 4. We observe that most changes to the policy are
incremental—80% of commits change less than 2% of pol-
icy lines. However, small changes to policy can have drastic
service impacts, therefore they are always peer-reviewed and
tested before production deployment (§6.2).

4 BGP in DCs versus the Internet

Multiple papers have studied issues with BGP conver-
gence [33, 37], routing instabilities [32] and misconfigura-
tions [21, 36], in the context of the Internet. This section
summarizes these issues and describes how we address them
in the data center context.

4.1 BGP Convergence

BGP convergence at the Internet-scale is a well-studied prob-
lem. Empirically, BGP can take minutes to converge. Labovitz
etal. [33] proposed an upper bound on BGP convergence. Dur-
ing convergence, BGP attempts to explore all possible paths
in a monotonically increasing order (in terms of AS_PATH
length)—a behavior known as the path-hunting problem [2].
In the worst case, BGP convergence can require O(n!) mes-
sages, where n is the number of routers in the network. Using
MinRouteAdvertisementInterval (MRAI) timer—minimum
time between advertisements from a BGP peer for a partic-
ular prefix—BGP convergence can take O(n) x MRAI sec-
onds. As mentioned in §3.1, our data centers experience many

drain/undrain operations daily. These operations will cause
BGP to reconverge, and this makes convergence a frequent
event in our data centers.

To alleviate the BGP path-hunting problem, we define route
propagation scopes and limit the set of backup paths that a
BGP process needs to explore. For example, rack prefixes
circulate only within a fabric pod; thus, an announcement
or withdrawal of a rack prefix should only trigger a pod’s
reconvergence. To prevent slow convergence during network
failures, we employ BGP policies that limit the AS_PATH that
a prefix may carry, thus curbing the path-hunting problem.

Our topology design with broad path diversity (§2) and our
predefined backup path policies (§3.1) ensure we only trigger
fabric-wide re-advertisements when a particular router has
lost all connections to its peers. Such events require tens to
hundreds of links to fail, which is very unlikely. Thus, BGP
convergence delays are infrequent in our data center. Since we
want the network to converge as quickly as possible, we set the
MRALI timer to 0. This could lead to increased advertisements
(as each router would advertise any changes immediately),
but our route propagation scopes ensure these advertisements
do not affect the entire network.

4.2 Routing Instability

Routing instability is the rapid change of network reachabil-
ity and topology information caused by pathological BGP
updates. These pathological BGP updates lead to increas-
ing CPU and memory utilization on routers, which can re-
sult in processing delays for legitimate updates, or router
crashes; these can lead to delay in convergence or packet
drops. Labovitz et al. [32] show that a significant fraction
of routing updates on the Internet was pathological and do
not reflect real network changes. With fine-grained control
over the routing design, BGP configuration, and software im-
plementation, we ensure that these pathological cases do not
manifest in the data center. We describe the common patho-
logical cases of routing instabilities and the solution in our
data center to mitigate these cases in Table 3.

The most frequent pathological BGP message pattern re-
ported by Labovitz et al. was WWDup. WWDup is a repeated
transmission of BGP withdrawals for a prefix, which is un-
reachable. The cause of WWDup was stateless BGP imple-
mentation: a BGP router does not store any state regarding
information advertised to its peers. The router would send a
withdrawal to all its peers, irrespective of whether it had sent
the same message. Internet-scale routers deal with millions of
routes, so it was not practical to store each prefix’s state for
each peer. In data centers, BGP works at a much smaller scale
(tens of thousands of prefixes) and typically has more memory
resources. Thus, we can maintain the state of advertisements
sent to each peer and check if a particular update needs send-
ing. This feature eliminates pathological BGP withdrawals.
Another class of pathological routing messages is AADup: a

Update Type | Description DC Solution

WWDup Repeated BGP withdrawals for unreach- | Store advertisement state in routers to suppress duplicate withdrawals
able prefixes

AADup Implicit route withdrawal replaced by a | Store advertisement state in routers to suppress duplicate announcements
duplicate of the same route

AADIff Route is replaced by an alternate route Fixed set of LOCAL_PREEF values to avoid pathological metric changes

TUp/TDown | Prefix reachability oscillation Monitor failures and automatically drain traffic from faulty devices

Table 3: Pathological BGP Updates found in the Internet by Labovitz et al. [32] and how we fix those in the data center

route is implicitly withdrawn and replaced by a duplicate. We
stop AADups with our stateful BGP implementation as well.
The other types of BGP messages causing routing instabili-
ties are AADIff (an alternate route replacing the old one) and
TUp/TDown (prefix reachability oscillation). AADiffs hap-
pen due to MED (multi-exit discriminator) or LOCAL_PREF
(local preference) oscillations in configurations that map
these values dynamically from the IGP metric. As a result,
when internal topology changes, BGP will announce adver-
tisements to its peers with new MED/LOCAL_PREF values,
even though the inter-domain BGP paths are unaffected. Hot-
potato BGP routing [46] is a similar type of routing instability
where the internal IGP cost affects the BGP best path decision.
We use a fixed set of LOCAL_PREF values. Thus, any change
in LOCAL_PREF indicates a legitimate update in the routing
preference. We do not use MED. TUp and TDown come from
the actual oscillating hardware failures. Our monitoring tools
detect such failures and automatically reroute traffic from
malfunctioning components to restore stability.

4.3 BGP Misconfigurations

Mahajan et al. [36] analyzed BGP misconfigurations in the
Internet. They found that those affected up to 1% of the global
prefixes each day. The misconfigurations increase the BGP
control plane overhead with generation of pathological route
updates. They can also lead to disruption of connectivity. The
two types of BGP misconfigurations were the following. First,
the origin misconfiguration is when a BGP router injects an
incorrect prefix to the global BGP table. Second, the export
misconfiguration is when an AS_PATH violates the routing
policy for an ISP. The former can happen in the data center.
For example, imagine a router advertising more specific /64
prefixes instead of the aggregated /56 prefix. A router could
also inject a prefix from a different pod’s address space, hi-
jacking the traffic. The latter is also possible in the data center.
A router may incorrectly advertise a prefix outside the prefix’s
intended propagation scope due to a bug in the routing pol-
icy. However, in practice, they are rare in our data center, as
all our route advertisement configurations are automatically
generated and verified. Since we have visibility and control
over the data center, we can detect these issues with monitor-
ing/auditing tools and promptly fix them. We further discuss
the causes of misconfigurations reported by Mahajan et al.

and demonstrate how we can avoid these in our architecture.
Incorrect BGP Attributes. One of the leading causes for
incorrect prefix injection is a router advertising prefixes as-
suming that they will get filtered upstream. For reliability
(§3), we add filters on both ends of the BGP session to ensure
incorrect prefixes get filtered at either end. Errors can also
happen due to wrong BGP communities, address typos, and
inaccurate summarization statements. We use a centralized
framework [44] to generate the configuration for individual
routers from templates. Thus, we can catch errors from a
single source, instead of dealing with separate routers.
Interactions with Other Protocols. A typical pattern is to
use IGPs such as OSPF for intra-domain routing and config-
ure redistribution to advertise the IGP routes into BGP for
inter-domain routing. Configuring redistribution can end up
announcing unintended routes. However, that is not a problem
with a single-protocol design that we have.
Configuration Update Issues. Mahajan et al also observed
cases when upon BGP restart, unexpected prefixes got adver-
tised due to misconfigurations. For instance, in one scenario,
configuration changes were not committed to persistent stor-
age, and a router restarted using the old configuration. In
our implementation, we ensure BGP does not advertise pre-
fixes until after processing all configuration constructs. Each
router has a configuration database, and we use transactions
to update it consistently. We can afford slower upgrade mech-
anisms in the data center due to increased redundancy; routers
in the Internet cannot be unavailable for long periods of time.
Thus, our BGP-based routing design tailored for the data
center, that realizes the high-level DC-oriented goals of uni-
formity and simplicity, is able to overcome BGP problems
common in the Internet.

5 Software Implementation

Like any other software, our BGP agent needs updates to add
new features/optimizations, apply bug fixes, be compatible
with other services, etc. Extending a third-party BGP imple-
mentation (by network vendors or open source [22,30]) is not
trivial and can add substantial complexity. Additionally, they
have long development cycles for upstreaming or releasing
their updates, and this affects our pace of innovation. To over-
come those challenges, we develop an in-house BGP agent in
C++ to run on our FBOSS [18] switches. In this section, we

251 -m- FB's BGP 7
—— Quagga ke
—e- Bird e

Convergence Time (s)

013 10 20 40 60
Number of routes (in thousands)
Figure 5: FB’s BGP vs Quagga vs Bird (convergence time)

present the main attributes of our agent.
Limited Feature Set. There are dozens of RFCs related to
BGP features and extensions, especially to support routing
for the Internet. Third-party implementations have support
for many of these features and extensions. This increases the
size of the agent codebase and its complexity due to interac-
tions between various features. A large and complex codebase
makes it harder for engineers to debug an issue and find a root
cause, extend the codebase to add new features, or to refactor
code to improve software quality. Therefore, the implementa-
tion of our BGP agent contains only the necessary protocol
features required in our data center, but it does not deviate
from the BGP RFCs [6-8]. Additionally, we only implement
a small subset of matches and actions to implement our rout-
ing policies. We summarize the limited protocol features and
match-action fields in Appendix A.
Multi-threading. Many BGP implementations are single-
threaded (e.g., Quagga [30] and Bird [22]). Modern switches
contain server-grade multi-core CPUs which allow us to run
the BGP control plane at the scale of our data center. Our
implementation employs multiple system threads, such as the
peer thread and RIB thread, to leverage the multi-core CPU.
The peer thread maintains the BGP state machine for each
peer and handles parsing, serializing, sending, and receiving
BGP messages over TCP sockets. The RIB thread maintains
Loc-RIB (the main routing table), calculates the best path and
multipaths for each route, and installs them to the switch hard-
ware. To further maximize parallelism in the context of each
system thread, we employ lightweight application threads
folly::fibers [3]. These have low context-switching cost
and execute small modular tasks in a cooperative manner.
The fiber design is ideal for the peer thread as BGP session
management is I/O intensive. To ensure lock-free property be-
tween system threads, we use message queues between fiber
threads, running on the same or different systems threads.
To evaluate our BGP agent’s performance, we compare it
against two popular open source BGP stacks: Quagga [30]
and Bird [22]. We run them on a single FSW device that
is receiving both IPv4 and IPv6 routes from 24 SSWs. We
compare their initial convergence time; this represents the
time period between starting the BGP process to network
convergence; this includes time for session establishment, and
receiving and processing all route advertisements. In Fig. 5,

@

E 601 -m- With Cache

5 —4— No Cache

@ 401 .
3 -

o

=4

S 20 1 _

o | -

0] —a---"

E ob®TTT : ,
[013 10 20 40 60

Number of routes (in thousands)

Figure 6: Impact of Policy Cache

we show the average over 5 runs. We observe that our BGP
agent constantly outperforms other software and provides a
speedup as high as 1.7X (Quagga) and 2.3X (Bird).

Policy. To improve policy execution performance, we added
a few optimizations again building on our uniform design.
Most of the peering sessions, from a device’s point of view,
are either towards uplink or downlink devices sharing the
same inbound/outbound policies. Here, we made two obser-
vations: (1) prefixes learned from the same peer usually share
the same BGP attributes, and (2) when routes are sent to the
same type of peers (uplink or downlink peers), the same pol-
icy is applied for each peer separately. Peer groups help to
avoid repetition in configuration, however, policies are still
executed for routes sent/received from each peer separately.
To leverage (1), we implemented batching in policy execu-
tion, where a set of prefixes and their shared BGP attributes
are given as input to the policy engine. The policy engine
performs the operation of matching the given BGP attributes
and the prefixes sharing those attributes, and returning the
accepted prefixes and their modified BGP attributes, based
on the policy action. To avoid re-computations of (2), we in-
troduced a policy cache, implemented in the form of an LRU
(least recently used) cache containing <policy name, prefix,
input BGP attributes, output BGP attributes> tuples. Once we
apply the policy for routes to a peer and store that result in
the policy cache, other peers in the same tier sharing the same
policy can use the cached result and avoid re-execution of the
policy. To show its impact, we run an experiment with and
without the cache. We run them on a single FSW device that
is sending IPv6 routes to 24 SSWs. We compare their time to
process all route advertisements, which includes the time to
apply outbound policy for each peer. In Fig. 6, we show the
average over 5 runs. We observe that policy cache improves
the time to process all routes by 1.2-2.4X.

Service Reachability. For flexible service reachability (§3),
we want a service to inject routes for virtual IP addresses
(VIPs) corresponding to the service directly to the RSW. How-
ever, current vendor BGP implementations commonly do not
allow multiple peering sessions from the same peer address,
which meant we would have to run a single injector service
on every server and the applications on the server will need
to interact with the injector to inject routes to the RSW. This
becomes operationally difficult since application owners do

not have visibility to the injection process. There also exists
a failure dependency as (i) applications need to monitor the
health of the injector service to use it, and (ii) the injector
needs to withdraw routes if the application fails. Instead, our
BGP agent can support multiple sessions from the same peer
address. Applications running on a server can directly initiate
a BGP peer session with the BGP agent on the RSW and
inject VIPs for service reachability. Thus, we do not have to
maintain the cumbersome injector service to workaround the
vendor BGP implementation constraint, and we also remove
the application-injector dependency.

Instrumentation. Traditionally, operators used network man-
agement tools (e.g. SNMP [27], NETCONF [20], etc) to col-
lect network statistics, like link load and packet loss ratio,
to monitor the health of the network. These tools can also
collect routing tables and a limited set of BGP peer events.
However, extending these tools to collect new types of data—
such as BGP convergence time, the number of application
peers, etc—is not trivial. It requires modifications and stan-
dardization of the network management protocols. Facebook
uses an in-house monitoring system called ODS [9, 18]. Using
a Thrift [1] management interface, operators can customize
the type of statistics they want to monitor. Next, ODS collects
these statistics into an event store. Finally, operators both
manually and through an automated alerting tool, query and
analyze the data to monitor their system. By integrating our
BGP agent with this monitoring framework, we treat BGP
like any other software. This allows us to collect fine-granular
information on BGP’s internal operation state, e.g. the number
of peers established, the number of sent/received prefixes per
peer, and other BGP statistics mentioned above. We monitor
these data to detect and troubleshoot network outages (§6.3).

6 Testing and Deployment

The two main components we routinely test and update are
configurations and the BGP agent implementation. These
updates introduce new BGP features and optimizations, fix
security issues, change BGP routing policies for improving
reliability and efficiency. However, frequent updates to the
control plane lead to increased risk of network outages in
production due to new bugs or performance regressions. We
want to ensure smooth network operations, avoid outages in
the data center, and catch regressions as early as possible.
Therefore, we developed continuous testing and deployment
pipelines for quick and frequent rollouts to production.

6.1 Testing

Our testing pipeline comprises three major components - unit
testing, emulation and canary testing.

Emulation is a useful testing framework for production
networks. Similar to CrystalNet [35], we develop a BGP emu-
lation framework for testing BGP agent, BGP configurations,
and policy implementations, and modeling BGP behavior for

the entire network. Emulation is used also for testing BGP
behavior under failure scenarios — link flaps, link down, or
BGP restart events. We also use emulation to test agent/config
upgrade processes. The advantage of catching bugs in emula-
tion is that they do not cause service disruptions in production.
Emulation testing can greatly reduce developer’s time and
amount of physical testbed resources required. However, em-
ulation cannot achieve high fidelity as it does not model the
underlying switch software and hardware. Using emulation
for BGP convergence regression is challenging as linux con-
tainers are considerably slower than hardware switches.
After successful emulation testing, we proceed to canary
testing in production. We run a new version of the BGP
agent/config on a small fraction of production switches called
canaries. Canary testing allows us to run a new version of
the agent/config in production settings to catch errors and
gain confidence in the version before rolling out to produc-
tion. We pick switches such that canaries can catch issues
arising in production due to scale — e.g., delayed switch con-
vergence. Canaries are used to test the following scenarios:
(1) transitioning from old to new BGP agent/config (this oc-
curs during deployment), (ii) transitioning from new to old
BGP agent/config (when issues were found in production,
we have to rollback to stable BGP version), and (iii) BGP
graceful restart (which is an important feature for smooth
deployment of BGP agent/config). Daily canaries are used to
run new versions for longer periods (typically a day). Produc-
tion monitoring systems will generate alerts for any abnormal
behaviors. Canary testing helps us catch bugs not caught in
emulation as it closely resembles BGP behavior in production,
such as problems created by changes in underlying libraries.

6.2 Deployment

Once a change (agent/config) has been certified by our testing
pipeline, we initiate the deployment phase of pushing the new
agent/config to the switches. There is a trade-off between
achieving high release velocity and maintaining overall reli-
ability. We cannot simply switch off traffic across the data
centers and upgrade the control plane in one-shot, as that
would drastically impact services and our reliability require-
ments. Thus, we must ensure minimal network disruption
while deploying the upgrades. This is to support quick and
frequent BGP evolution in production. We devise a push plan
which starts rolling out the upgrade gradually to ensure we
can catch problems earlier in the deployment process.

Push Mechanisms. We classify upgrades in two classes: dis-
ruptive and non-disruptive, depending on if the upgrade af-
fects existing forwarding state on the switch. Most upgrades
in the data center are non-disruptive (performance optimiza-
tions, integration with other systems, etc.). To minimize rout-
ing instabilities during non-disruptive upgrades, we use BGP
graceful restart (GR) [8]. When a switch is being upgraded,
GR ensures that its peers do not delete existing routes for a

Phase | Specification

P1 Small number of RSWs in a random DC

P2 Small number of RSWs (> P1) in another random DC

P3 Small fraction of switches in all tiers in DC serving web traffic
P4 10% of switches across DCs (to account for site differences)
P5 20% of switches across DCs

P6 Global push to all switches

Table 4: Specification of the push phases

period of time during which the switch’s BGP agent/config is
upgraded. The switch then comes up, re-establishes the ses-
sions with its peers and re-advertises routes. Since the upgrade
is non-disruptive, the peers’ forwarding state are unchanged.
Without GR, the peers would think the switch is down, and
withdraw routes through that switch, only to re-advertise them
when the switch comes back up after the upgrade.

Disruptive upgrades (e.g., changes in policy affecting ex-
isting switch forwarding state) would trigger new adver-
tisements/withdrawals to switches, and BGP re-convergence
would occur subsequently. During this period, production traf-
fic could be dropped or take longer paths causing increased
latencies. Thus, if the binary or configuration change is dis-
ruptive, we drain (§3) and upgrade the device without im-
pacting production traffic. Draining a device entails moving
production traffic away from the device and reducing effective
capacity in the network. Thus, we pool disruptive changes
and upgrade the drained device at once instead of draining
the device for each individual upgrade.

Push Phases. Our push plan comprises six phases P1-P6 per-
formed sequentially to apply the upgrades to agent/config in
production gradually. We describe the specification of the 6
phases in Table 4. In each phase, the push engine randomly
selects a certain number of switches based on the phase’s
specification. After selection, the push engine upgrades these
switches and restarts BGP on these switches. Our 6 push
phases are to progressively increase scope of deployment with
the last phase being the global push to all switches. P1-P5 can
be construed as extensive testing phases: P1 and P2 modify
a small number of rack switches to start the push. P3 is our
first major deployment phase to all tiers in the topology. We
choose a single data center which serves web traffic because
our web applications have provisions such as load balancing
to mitigate failures. Thus, failures in P3 have less impact
to our services. To assess if our upgrade is safe in more di-
verse settings, P4 and P5 upgrade a significant fraction of our
switches across different data center regions which serve dif-
ferent kinds of traffic workloads. Even if catastrophic outages
occur during P4 or P5, we would still be able to achieve high-
performance connectivity due to the in-built redundancy in the
network topology and our backup path policies—switches run-
ning the stable BGP agent/config would re-converge quickly
to reduce impact of the outage. Finally, in P6, we upgrade the
rest of the switches in all data centers.

Push Monitoring. To detect problems during deployment,

N P1 Em P3 P5
P2 N P4 HEEE P6

MO M3 M6 Mo M12

Push Timeline

Figure 7: Timeline of BGP push phases over a year

Release | Total | P1 | P2 | P3 | P4 | P5 | P6

7 0.57 0 0 0.28 | 0.20 | 0.82 | 0.56
8 0.43 0 0 0 0.12 | 0.13 | 0.54
9 0.51 0 [094|095 | 1.12 | 0.25 | 0.49

Table 5: Push error percentages for the last 3 pushes for dif-
ferent push phases.

we have BGPMonitor, a scalable service to monitor all BGP
speaking devices in the data center. All BGP speakers re-
lay advertisements/withdrawals they receive to BGPMonitor.
BGPMonitor then verifies the routes which are expected to
be unchanged, e.g., routes for addresses originating from the
switch. If we see route advertisements/withdrawals within the
window of a non-disruptive upgrade, we stop the push and
report the potential issue to an engineer, who analyzes the
issue and determines if push can proceed. One of our outages
was detected using BGPMonitor (§6.3).

Push Results. Figure 7 shows the timeline of push releases
over a 12 month period. We achieved 9 successful pushes of
our BGP agent to production. On average, each push takes
2-3 weeks. Figure 7 highlights the high release velocity that
we are able to achieve for BGP in our data center. We are
able to fix performance and security issues as well as support
new features at fast timescales. This also allows other appli-
cations, which leverage the BGP routing features, to innovate
quickly. P6 is the most time-consuming phase of the push
as it upgrades majority of the switches. We catch various er-
rors in P1-P5, and thus, some of these phases can take longer
(more than a day). Figure 7 also highlights the highly evolv-
ing nature of the data center. Our data centers are undergoing
different changes to the BGP agent (adding support for BGP
constructs, bug fixes, performance optimizations and security
patches) for over 52% of the time in the 12 month duration.
Ideally, each phase should upgrade all the switches (100%).
For instance, in one push, we fixed a security bug and we
needed all the switches to run the fixed BGP agent version
to ensure the network is not vulnerable. However, various
devices were not reachable for a multitude of reasons. Devices
are often brought down for various maintenance tasks, thus
making them unreachable during push. Devices can also be
experiencing hardware or power issues during the push phases.
We cannot predict the downtime for such devices, and we

do not want to block the push indeterminately because of a
small fraction of these devices. Hence, for each phase, we
set a threshold of 99% on the number of devices we want
to upgrade in each phase, i.e., 1% of the devices in our data
centers could be running older BGP versions. We expect
these devices will be upgraded in the next push phases. We
report the push errors (number of devices which did not get
upgraded) encountered in the last 3 pushes of Figure 7 in
Table 5. We upgrade more than 99.43% of our data center in
each push. These numbers indicate that there is always a small
fraction of the data center which is undergoing maintenance.
We try to upgrade these devices in the next push.

6.3 SEVs

Despite our testing and push pipeline, the scale and evolving
nature of our data center’s control plane (§6.2), the complex-
ity of BGP and its interaction with other services (e.g. push,
draining, etc), and the inevitable nature of human errors make
network outages an unavoidable obstacle. In this section, we
discuss some of the major routing-related Site EVents (SEVs)
that occurred over a 2 year period. Errors and routing issues
can arise due to (1) a recent change in configuration or BGP
software, or (2) latent bugs in the code which are triggered
due to a previously unseen scenario. We use multiple monitor-
ing tools to detect anomalies in our network. These include
(i) event data stores (ODS [9]) to log BGP statistics like
downtime of BGP sessions at a switch, (ii) netsonar [34] to
detect unreachable devices, and (iii) netnorad [10] to measure
server-to-server packet loss ratio and network latency.

We experienced a total of 14 SEVs. These BGP-related
SEVs were caused due to a combination of errors in its policy,
software and interaction with other tools (e.g. push framework,
draining framework, etc) in our data centers.

One set of SEVs were caused due to incomplete/incorrect
deployment of policies. For example, one of the updates re-
quired both changing communities set in a policy at one tier
and changing policies that act on those communities at an-
other tier. It also required the first to be applied after the latter.
However, during a push, policies were applied in an incor-
rect order. This created blackholes within the data center,
degrading performance of multiple services.

Another set of SEVs were caused due to an error in BGP
software. One SEV was caused by a bug in implementation
of a feature called max-route limit that limits the number of
prefixes received from a peer. The bug was that the max-route
counter was getting incremented incorrectly for previously
announced prefixes. This made BGP tear down multiple ses-
sions, leading services to experience SLA violations.

We also experienced problems due to interactions between
different versions of the BGP software. In one SEV, different
versions were using different graceful restart parameters [8].
During graceful restart, the old version of BGP used stale
paths for 30s. However, the new version deferred sending

new routes for as long as 120s, waiting for receiving End-
of-RIB from all peers. Hence, the old version purged stale
paths learned from its peer before receiving them from the
new version. This resulted in temporary traffic loss for ~ 90s.
BGPMonitor detected this outage during the push phases.
All these outages were resolved by rolling back to a previ-
ous stable version of BGP, followed by pushing a new fixed
version in the next release cycle. Our design principles of
uniformity and simplicity, while helpful, do not address is-
sues such as software bugs and version incompatibilities, for
which special care is needed. Our aim is to create a good
testing framework to prevent these outages. We created the
emulation platform during the later phases of our BGP devel-
opment process and evolved ever since. As a follow-up to the
aforementioned SEVs, we added new test cases to emulate
those scenarios. As part of our ongoing work (§7), we are
exploring ideas to further improve our testing pipeline.

7 Future Work

This section describes some of our ongoing work based on the
gaps we have identified during our past years of data center
network operations.

Policy Management. BGP supports a rich policy framework.
The inbound and outbound policy is a decision tree with mul-
tiple rules capturing the policy designer’s intent. Although
the routing policies are uniform across tiers in our design, it
is non-trivial to manage and reason about the full distributed
policy set. Control plane verification tools [13, 15,24, 40]
verify policies by modeling device configurations. However,
existing tools cannot scale to the size of our data centers, and
they do not support such complex intent as flexible service
reachability. Extending network verification to support our
policy design at scale is an important future direction. Net-
work synthesis tools [12,16,17,19,43] use high-level policy
intents to produce policy-compliant configurations. Unfortu-
nately, the policy intent language used by these tools cannot
model all our policies (§2). Additionally, the configurations
generated by them do not follow our design choices (§3). Ex-
tending network synthesis to support our BGP design and
policies is also an ongoing direction we are pursuing.
Evolving Testing Framework. Policy verification tools as-
sume the underlying software is error-free and homogeneous
across devices. 8 of our SEVs occurred due to software errors.
Existing tools cannot proactively detect such issues. To com-
pensate, we use an emulation platform to detect control-plane
errors before deployment. Some routing issues, like transient
forwarding loops and black holes, materialize while deploy-
ing BGP configuration and software updates in a live network.
Our deployment process monitoring (§6.2) demonstrates that
the control plane is under constant churn. 10 of our SEVs were
triggered while deploying changes. To address that, we are
extending our emulation platform to mimic the deployment
pipeline and validate the impact of various deployment strate-

gies. We are further exploring techniques to closely emulate
our hardware switches and combined hardware/software fail-
ure scenarios. We are also extending our testing framework
to include network protocol validation tools [45] and fuzz
testing [31]. Protocol validation tools can ensure our BGP
agent is RFC-compliant. Fuzz testing can make our BGP
agent robust against invalid, unexpected, or random external
BGP messages with well-defined failure handling.
Load-sharing under Failures. Over the past few years, we
observe that hardware failures or drains can create load im-
balance. For example, SSW’s uplinks to the DC aggregation
layer are not balanced when the failure of an SSW-FSW link
(or SSW/FSW node) creates topology asymmetry in the spine
plane. If one of an RSW’s (say R) four upstream FSWs (say
F) cannot reach one of its four SSWs, then F’s SSWs would
serve 1/4 of the traffic over 3 uplinks unlike the other 3 FSWs
that serve 1/4 of the traffic over 4 uplinks. To balance traffic
load across SSW’s uplinks, R should reduce the traffic sent
towards F' from 1/4 to 3/15, and shift the remaining traffic to
the other 3 FSWs. Although a centralized controller would
be the most direct way to shift traffic to balance the load, we
are considering an approach like Weighted ECMP [48] to
leverage our BGP-based routing design.

8 Related Work

Routing in Data Center. There are different designs for
large-scale data center routing, some are based on BGP while
others use a centralized software-defined networking (SDN)
design. An alternative BGP-based routing design for data cen-
ters is described in RFC7938 [11]. Our design differs in a few
significant ways. One difference is the use of BGP Confeder-
ations for pods (called "clusters" in RFC7938). That enables
our design to stick with the two-octet private ASN numbering
space and reuse the same ASN on all rack switches. Thus, we
also do not use the "AllowAS In" BGP feature in our design
and maintain native BGP loop prevention. The second differ-
ence is our extensive use of route summarization in order to
keep the routing tables small and improve the stability and
convergence speed of the distributed system. The RFC7938
proposes keeping full routing visibility for all prefixes on all
rack switches. Another major difference is our extensive use
of the routing policies to implement strict adherence to the
reachability and reliability goals, realize the different opera-
tional states of the devices, establish pre-determined network
backup paths, and provide means for host-signaled traffic en-
gineering, such as primary/secondary path selection for VIPs.

Singh et. al [42] showed that Google uses an SDN-based
design for its data center network routing. It has a central
route controller to collect and distribute link state information
over a reliable out-of-band Control Plane Network (CPN)
that runs a custom IGP for topology state distribution. Their
reasoning behind building a centralized routing plane from
scratch was to be able to leverage the unique characteristics

and homogeneity of their network which comprises custom
hardware. We decided to use a decentralized BGP approach to
take advantage of BGP’s extensive policy control, scalability,
third-party vendor support, operator familiarity, etc.

Operational Framework. CrystalNet [35] is a cloud-scale,
high-fidelity network emulator used by Microsoft to proac-
tively validate all network operations before rolling out to pro-
duction. We use an in-house emulation framework to easily
integrate with our monitoring tools and deployment pipelines.
Janus [14] is a software and hardware update planner that
uses operator specified risks to estimate and choose the push
plan with minimal availability and performance impact on
customers. We use a framework similar to Janus for our main-
tenance planning, which includes disruptive BGP agent/config
push. Govindan et. al [26] conducted detailed analysis of over
100 high-impact network failure events at Google. They dis-
covered that a large number of failures happened when a
network management operation was in progress. Motivated
by these failures, they proposed certain design principles for
high availability, e.g. continuously monitor the network, use
in-house testing and rollout procedures, make (network) up-
date the common case, etc. We acknowledge these principles;
they have always been a part of our operational workflow.

BGP at Edge. EdgeFabric [41] and Espresso [47] also run
BGP at scale. However, they are deployed at the edge for the
purpose of CDN traffic engineering. They are both designed
by content providers to overcome challenges with BGP when
dealing with large traffic volumes. They have centralized
control over routing while retaining BGP as the interface
to peers. They control which PoP and/or path traffic to a
customer should choose as a function of path performance.

9 Conclusion

This paper presents our experience operating BGP in large-
scale data centers. Our design follows the principles of unifor-
mity and simplicity, and it espouses tight integration between
the data center topology, configuration, switch software, and
DC-wide operational pipeline. We show how we realize these
principles and enable BGP to operate efficiently at scale. Nev-
ertheless, our system is a work in progress. We describe some
major operational issues we faced and how these are inform-
ing our routing evolution.

Acknowledgments. We thank many Facebook colleagues
who have contributed to this work over the years and toward
this paper. These include Allwyn Carvalho, Tian Fang, Jason
Wilson, Hany Morsy, Mithun Aditya Muruganandam, Pavan
Patil, Neil Spring, Srikanth Sundaresan, Sunil Khaunte, Omar
Baldonado, and many others. We also thank the anonymous re-
viewers for their insightful comments. This work is supported
by the National Science Foundation grants CNS-1637516 and
CNS-1763512.

References

[1] Apache Thrift. http://thrift.apache.org/.

[2] BGP Path Hunting. https://paul.jakma.org/2020/01/21/
bgp-path-hunting/.

[3] folly::fibers. https://github.com/facebook/folly/tree/
master/folly/fibers.

[4] Introducing data center fabric, the next-
generation Facebook data center network.
https://engineering.fb.com/production-engineering/
introducing-data-center-fabric-the-next-generation-
facebook-data-center-network/.

[5] Standard for local and metropolitan area networks: Me-
dia access control (mac) bridges. IEEE Std 802.1D-
1990, pages 1-176, 1991.

[6] A Border Gateway Protocol 4 (BGP-4).
tools.ietf.org/html/rfc4271, 2006.

https://

[7] Autonomous System Confederations for BGP. https:
/Itools.ietf.org/html/rfc5065, 2007.

[8] Graceful Restart Mechanism for BGP.
tools.ietf.org/html/rfc4724, 2007.

https://

[9] Facebook’s Top Open Data Problems. https:
/lresearch.fb.com/blog/2014/10/facebook-s-top-open-
data-problems/, 2014.

[10] NetNORAD: Troubleshooting networks via end-to-end
probing. https://engineering.fb.com/core-data/netnorad-
troubleshooting-networks-via-end-to-end-probing/,
2016.

[11] Use of BGP for routing in large-scale data centers. https:
/Itools.ietf.org/html/rfc7938, 2016.

[12] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson,
and Aditya Akella. Aed: incrementally synthesizing
policy-compliant and manageable configurations. In
Proceedings of the 16th International Conference on

emerging Networking EXperiments and Technologies,
pages 482-495, 2020.

[13] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson,
and Aditya Akella. Tiramisu: Fast and general network
verification. In Symposium on Networked Systems De-
sign and Implementation (NSDI), 2020.

[14] Omid Alipourfard, Jiagi Gao, Jeremie Koenig, Chris
Harshaw, Amin Vahdat, and Minlan Yu. Risk based
planning of network changes in evolving data centers. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 414-429. ACM, 2019.

[15] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A general approach to network configuration
verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,

pages 155-168, 2017.

[16] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra
Padhye, and David Walker. Don’t mind the gap: Bridg-
ing network-wide objectives and device-level configu-
rations. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 328-341, 2016.

[17] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jiten-
dra Padhye, and David Walker. Network configuration
synthesis with abstract topologies. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 437451,
2017.

[18] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang,
Saman Kazemkhani, Rob Sherwood, Ying Zhang, and
Hongyi Zeng. Fboss: building switch software at scale.
In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages
342-356. ACM, 2018.

[19] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. Network-wide configuration syn-
thesis. In International Conference on Computer Aided
Verification, pages 261-281. Springer, 2017.

[20] Rob Enns, Martin Bjorklund, and Juergen Schoen-
waelder. Netconf configuration protocol. Technical
report, RFC 4741, December, 2006.

[21] Nick Feamster and Hari Balakrishnan. Detecting bgp
configuration faults with static analysis. In Proceedings
of the 2nd Conference on Symposium on Networked Sys-
tems Design and Implementation - Volume 2, NSDI’05,
page 43-56, USA, 2005. USENIX Association.

[22] Ondrej Filip, Libor Forst, Pavel Machek, Martin Mares,
and Ondrej Zajicek. The bird internet routing daemon
project. Internet: www. bird. network. cz, 2011.

[23] P. Francois, O. Bonaventure, B. Decraene, and P. Coste.
Avoiding disruptions during maintenance operations on
bgp sessions. IEEE Transactions on Network and Ser-
vice Management, 4(3):1-11, 2007.

[24] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya
Akella, and Ratul Mahajan. Fast control plane analysis
using an abstract representation. In Proceedings of
the 2016 ACM SIGCOMM Conference, pages 300-313,
2016.

[25] Les Ginsberg, Stefano Previdi, and Mach Chen. IS-IS
Extensions for Advertising Router Information. RFC
7981, October 2016.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Ramesh Govindan, Ina Minei, Mahesh Kallahalla,
Bikash Koley, and Amin Vahdat. Evolve or die: High-
availability design principles drawn from googles net-
work infrastructure. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 58-72. ACM, 2016.

David Harrington, Randy Presuhn, and Bert Wijnen.
Rfc3411: An architecture for describing simple network
management protocol (snmp) management frameworks,
2002.

Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
wan. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, page 15-26,
New York, NY, USA, 2013. Association for Computing
Machinery.

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Urs Holzle, Stephen Stuart, and Amin Vahdat. B4: Expe-
rience with a globally deployed software defined wan. In
Proceedings of the ACM SIGCOMM Conference, Hong
Kong, China, 2013.

Paul Jakma and David Lamparter. Introduction to the
quagga routing suite. IEEE Network, 28(2):42-48, 2014.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 2123-2138, 2018.

C. Labovitz, G. R. Malan, and F. Jahanian. Origins of
internet routing instability. In IEEE INFOCOM ’99.
Conference on Computer Communications. Proceed-
ings. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. The Future is
Now (Cat. No.99CH36320), volume 1, pages 218-226
vol.1, 1999.

Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam
Jahanian. Delayed internet routing convergence. In Pro-
ceedings of the Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Com-
munication, SIGCOMM ’00, page 175-187, New York,
NY, USA, 2000. Association for Computing Machinery.

Jose Leitao and David Rothera. Dr NMS or: How face-
book learned to stop worrying and love the network.
Dublin, May 2015. USENIX Association.

Honggiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin
Cao, Sri Tallapragada, Nuno P Lopes, Andrey Ry-
balchenko, Guohan Lu, and Lihua Yuan. Crystalnet:

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

Faithfully emulating large production networks. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 599-613. ACM, 2017.

Ratul Mahajan, David Wetherall, and Tom Anderson.
Understanding bgp misconfiguration. In Proceedings
of the 2002 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communica-
tions, SIGCOMM °02, page 3—16, New York, NY, USA,
2002. Association for Computing Machinery.

Zhuoqing Morley Mao, Ramesh Govindan, George
Varghese, and Randy H. Katz. Route flap damping ex-
acerbates internet routing convergence. In Proceedings
of the 2002 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communica-
tions, SIGCOMM 02, page 221-233, New York, NY,
USA, 2002. Association for Computing Machinery.

Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and
Onur Mutlu. A large scale study of data center network
reliability. In Proceedings of the Internet Measurement
Conference 2018, pages 393-407. ACM, 2018.

John Moy. Ospf version 2. STD 54, RFC Editor, April
1998. http://www.rfc-editor.org/rfc/rfc2328.txt.

Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand,
P Godfrey, and Matthew Caesar. Plankton: Scalable net-
work configuration verification through model checking.
arXiv preprint arXiv:1911.02128, 2019.

Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan
Katz-Bassett, Harsha V Madhyastha, Italo Cunha, James
Quinn, Saif Hasan, Petr Lapukhov, and Hongyi Zeng.
Engineering egress with edge fabric: Steering oceans of
content to the world. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communi-
cation, pages 418-431. ACM, 2017.

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, et al. Jupiter
rising: A decade of clos topologies and centralized con-
trol in google’s datacenter network. ACM SIGCOMM
computer communication review, 45(4):183-197, 2015.

Kausik Subramanian, Loris D’Antoni, and Aditya
Akella. Synthesis of fault-tolerant distributed router
configurations. Proceedings of the ACM on Measure-
ment and Analysis of Computing Systems, 2(1):1-26,
2018.

Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H.Y. Wong,
and Hongyi Zeng. Robotron: Top-down network man-
agement at facebook scale. In Proceedings of the 2016
ACM SIGCOMM Conference, SIGCOMM ’16, page

[45]

[46]

[47]

426-439, New York, NY, USA, 2016. Association for
Computing Machinery.

1TM

Keysight Technologies. Ixanvl' ' —automated network

validation library.

Renata Teixeira, Aman Shaikh, Tim Griffin, and Jennifer
Rexford. Dynamics of hot-potato routing in ip networks.
In Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems, SIG-
METRICS ’04/Performance *04, page 307-319, New
York, NY, USA, 2004. Association for Computing Ma-
chinery.

Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve
Padgett, Matthew Holliman, Gary Baldus, Marcus Hines,
Taeeun Kim, Ashok Narayanan, Ankur Jain, et al. Tak-
ing the edge off with espresso: Scale, reliability and
programmability for global internet peering. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 432-445. ACM,
2017.

[48] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kab-
bani, Leon Poutievski, Arjun Singh, and Amin Vahdat.
Wemp: Weighted cost multipathing for improved fair-
ness in data centers. In Proceedings of the Ninth Euro-
pean Conference on Computer Systems, EuroSys ’14,
New York, NY, USA, 2014. Association for Computing
Machinery.

A BGP Agent Features

As mentioned in §5, our BGP agent contains only those nec-
essary protocol features that are required in our data center.
We summarize the different agent features in Table 6. Addi-
tionally, we only implement a small subset of matches and
actions mentioned in Table 7 to implement our routing poli-
cies specified in §3.

Feature

Description

Rationale

Core Feature

eBGP
Confederations
eBGP Multipath
IPv4/IPv6 Addresses
Route Origination

Route Aggregation
Remove Private AS

In/Out-bound Policy
Dynamic Peer

Establish external BGP session

Divide an AS into multiple sub ASes
Select and program multipath

Support IPv4/IPv6 route exchange
Send update for IP prefixes assigned to
a switch

Send update for less-specific IP pre-
fixes aggregating (summarizing) more-
specific routes

Remove Private ASNs within AS-PATH
Support BGP policies specified in §2
Accept BGP session initiation from a
range of peer addresses

To Exchange and forward route updates
To use the same private ASNs within a pod
To implement ECMP-based load-sharing
To enable dual-stack

To minimize number of route updates

To reuse private ASNs.

To allow VIP injection from any server

Operational Feature

Graceful Restart
Link Fail Detection

Propagation Delay
FIB Acknowledgement

Max-route-limit

Peer Groups

Wait for small graceful time period be-
fore removing routes

Fast BGP session termination upon link
failure

Delay advertisements of new routes
Advertise routes after installation to
hardware

Limit number of prefixes received from
a peer

Define and reuse peer configurations for
multiple peers

To reduce network churn
To converge faster

To wait for convergence before receiving traffic
To avoid blackholes if peer converges before us

To disallow unexpected volume of updates

To make configuration compact

Table 6: Core and operational BGP features

Match Fields Action Fields
as-path add/delete/set as-path
community-list | add/delete/set community
origin set origin
local preference | inc/dec/set local preference
as-path-length permit
prefix-list deny

Table 7: Policy match-action fields

